روش المان محدود (Finite Element Method) – مبانی و کاربردها

مقادیر تخمینی پارامترهای مجهول را برای تعدادی از نقاط مجزا در محدوده تعریف مسئله به دست می‌آورد. راه حل روش المان محدود، تقسیم مسائل بزرگ به بخش‌های کوچک‌تر و ساده‌تری به نام «المان‌های محدود» (Finite Elements) است. در مرحله بعد، معادلات ساده‌ای که معرف این المان‌های محدود هستند، در یک دستگاه معادلات بزرگ‌تر در کنار یکدیگر قرار می‌گیرند و فرم کلی مسئله اصلی را تشکیل می‌دهند. انجام مطالعه یا تحلیل بر روی یک پدیده با استفاده از FEM، با عنوان «تحلیل المان محدود» (Finite Element Analysis) شناخته می‌شود.

مفاهیم اساسی روش المان محدود

در مرحله اول، معادله مرتبط با هر یک از المان‌ها به صورت مجموعه معادلات ساده‌ای است که معادلات پیچیده اصلی (اغلب معادلات دیفرانسیل با مشتقات جزئی) را در نواحی مختلف تخمین می‌زند. برای انجام این تخمین، معمولاً FEM به عنوان حالت خاص «روش گالرکین» (Galerkin Method) در نظر گرفته می‌شود. این فرآیند در ریاضیات، با انتگرال‌گیری از ضرب داخلی توابع وزنی و باقیمانده و همچنین برابر با صفر قرار دادن حاصل انتگرال صورت می‌گیرد. به عبارت ساده‌تر، این فرآیند با برازش توابع آزمایشی به معادلات دیفرانسیل با مشتقات جزئی، میزان خطای تخمین را به حداقل می‌رساند. مقدار باقیمانده، خطای به دست آمده از توابع آزمایشی است. توابع وزنی نیز توابع تقریب چندجمله‌ای هستند که میزان باقیمانده را نشان می‌دهند. فرآیند مذکور، تمام مشتقات فضایی معادلات دیفرانسیل با مشتقات جزئی را حذف می‌کند و آن‌ها را از طریق دو دستگاه زیر به صورت ناحیه‌ای تخمین می‌زند:

دستگاه معادلات جبری برای مسائل حالت پایدار

دستگاه معادلات دیفرانسیل معمولی برای مسائل گذرا

این دو دستگاه معادلات مختص به المان‌های مسئله هستند. اگر معادلات دیفرانسیل با مشتقات جزئی به صورت خطی باشند، معادلات المان‌ها نیز خطی خواهند بود و بالعکس. معادلات جبری به دست آمده از مسائل حالت پایدار با استفاده از روش‌های جبر خطی عددی حل می‌شوند؛ در حالی که حل معادلات دیفرانسیل معمولی به دست آمده از مسائل گذرا توسط روش‌های استاندارد انتگرال‌گیری عددی نظیر روش اویلر یا «رونگه‐کوتا» (Runge-Kutta) صورت می‌گیرد.

در مرحله دوم، یک دستگاه معادلات کلی با استفاده از معادلات مربوط به المان‌ها تشکیل می‌شود. این فرآیند از طریق تبدیل مختصات گره‌های محلی محدودهای کوچک به گره‌های کلی محدوده اصلی صورت می‌گیرد. برای انجام این تبدیلات فضایی به تنظیم جهت‌گیری مناسب نسبت به دستگاه مختصات مرجع نیاز است. در اغلب موارد، این عملیات توسط نرم‌افزاری مبتنی بر FEM و با استفاده از داده‌های مختصاتی به دست آمده از محدوده‌های کوچک اجرا می‌شود.

درک روش المان محدود با استفاده از کاربرد عملی آن یعنی «تحلیل المان محدود» (Finite Element Analysis) یا اصطلاحاً «FEA» ساده‌تر است. FEA، یک ابزار محاسباتی برای اجرای تحلیل‌های مهندسی است. این ابزار از روش‌های تولید مش برای تقسیم‌بندی یک مسئله پیچیده به المان‌های کوچک و کدهای نرم‌افزاری الگوریتم‌های FEM بهره می‌برد. در هنگام به کارگیری FEA، یک مسئله پیچیده معمولاً به صورت یک سیستم فیزیکی بر مبنای قواعدی نظیر «معادله تیر اویلر-برنولی» (Euler-Bernoulli Beam Equation)، «معادله گرما» (Heat Equation) یا «معادلات ناویه-استوکس» (Navier-Stokes Equations) در نظر گرفته می‌شود که توسط معادلات انتگرالی یا معادلات دیفرانسیل با مشتقات جزئی بیان شده است. هر یک از المان‌های کوچک این مسئله پیچیده، نواحی مختلف سیستم فیزیکی تعریف شده را نشان می‌دهند.

به منظور تحلیل مسائلی با محدوده‌های بسیار پیچیده (ماشین‌ها و خطوط انتقال نفت)، محدوده‌های متغیر (در حین واکنش حالت جامد به همراه تغییر مرز)، نیاز به دقت‌های متفاوت در بخش‌های مختلف محدوده یا عدم هموار بودن روش حل، FEA گزینه مناسبی خواهد بود. در شرایطی که نیاز به ساخت نمونه‌های اولیه با دقت بالا باشد، شبیه‌سازی‌های FEA با فراهم کردن یک ابزار ارزشمند، تعداد نمونه‌های مورد نیاز را کاهش می‌دهند. به عنوان مثال، در شبیه‌سازی تصادف خودرو از جلو، امکان افزایش دقت نواحی مهم نظیر بخش جلویی ماشین و کاهش این دقت در بخش عقب وجود دارد. این کار باعث کاهش هزینه شبیه‌سازی می‌شود. در پیش‌بینی آب و هوا توسط روش‌های عددی نیز پیش‌بینی دقیق پدیده‌های شدید غیرخطی (مانند گردباد یا گرداب) از اهمیت بالاتری نسبت به نواحی نسبتاً آرام برخوردار است.

انواع روش‌های المان محدود

«روش المان کاربردی» (Applied Element Method) یا «AEM»

AEM، یک روش تحلیل عددی برای پیش‌بینی رفتار سازه‌های پیوسته و ناپیوسته است. این روش برای ارزیابی آسیب‌پذیری سازه‌ها (خرابي پیش‌رونده، تحلیل انفجار، تحلیل ضربه و تحلیل لرزه‌ای)، مهندسی قانونی، طراحی مبتنی بر عملکرد، تحلیل تخریب، تحلیل عملکرد شیشه و ایجاد جلوه‌های بصری به کار می‎رود.

«روش المان محدود تعمیم یافته» (Generalized Finite Element Method) یا «GFEM»

GFEM، به منظور بهبود تخمین‌های محلی در مدل‌های المان محدود توسعه یافته است. استفاده از این روش مسائلی با شرایط مرزی پیچیده، مقیاس میکرو و لایه‌های مرزی پیشنهاد می‌شود.

«روش المان محدود توسعه یافته» (Extended Finite Element Method) یا «XFEM»

XFEM، یک روش عددی بر پایه GFEM و «روش تقسیم واحد» (Partition of Unity Method) یا اصطلاحاً «PUM» است. این روش به منظور حل معادلات دیفرانسیل با مشتقات جزئی، با افزودن توابع ناپیوسته به فضای حل مسئله روش المان محدود قدیمی را توسعه می‌دهد. به این ترتیب، امکان بهره‌گیری از ویژگی‌های مرتبط با ناپیوستگی‌ها، تکینگی‌های جبری، لایه‌های مرزی، مش‌بندی معمولی ریزساختارها و غیره فراهم می‌شود. نتایج به دست آمده از XFEM، بهبود دقت و نرخ همگرایی را نشان می‌دهند. به علاوه، به دلیل عدم نیاز به مش‌بندی مجدد سطوح ناپیوستگی‌ها در این روش، زمان محاسباتی و خطاهای رایج در روش‌های مرسوم المان محدود کاهش می‌یابد.

نرم‌افزارهایی نظیر «xfem++ 3» ،«GetFEM++ 2» و «++openxfem»، از روش XFEM برای تحلیل مسائل مختلف استفاده می‌کنند. این روش در کدهایی نظیر «ASTER» ،«Morfeo» ،«Radioss» و نرم‌افزارهای معروف «آباکوس» (Abaqus) و «انسیس» (ANSYS) نیز به کار گرفته می‌شود.

کاربرد روش المان محدود

بسیاری از شاخه‌های مهندسی مکانیک نظیر علوم وابسته به هوانوردی، بیومکانیک و صنایع خودروسازی برای طراحی و توسعه محصولات خود از روش المان محدود کمک می‌گیرند. امروزه، مجموعه‌های نرم‌افزاری FEM، توانایی در نظر گرفتن شرایط ویژه دمایی، الکترومغناطیسی، مواد سیال و سازه‌ها را دارند.

در شبیه‌سازی سازه‌ها، FEM در به تصویر کشیدن سختی و مقاومت مواد و همچنین به حداقل رساند وزنِ مواد به کار گرفته شده و در نتیجه کاهش هزینه ساخت سازه کمک فوق‌العاده‌ای می‌کند.

نمایش نحوه تغییر شکل یک ماشین در حین تصادف با استفاده از تحلیل المان حدی

در FEM، امکان نمایش دقیق محل خمش یا پیچش سازه و تشخیص نحوه توزیع تنش‌ها و جابجایی‌ها فراهم می‌شود. نرم‌افزارهای FEM گزینه‌های زیادی را برای کنترل پیچیدگی مدل‌سازی و تحلیل یک سیستم در اختیار طراحان قرار می‌دهند. به این ترتیب می‌توان سطح دقت مورد نیاز و زمان انجام محاسبات برای اکثر مسائل مهندسی را مدیریت کرد. روش المان محدود، ساخت، اصلاح و بهینه‌سازی طراحی‌ها را پیش از شروع تولید امکان‌پذیر می‌کند.

نمونه ای از یک مدل المان محدود که یک مفصل زانوی انسان را مورد تحلیل قرار می‌دهد.

استفاده از ابزارهای قدرتمند FEM، استانداردهای طراحی‌های مهندسی و روش‌های به کار گرفته شده در فرآیند این طراحی‌ها را به طور قابل توجهی بهبود بخشید. با معرفی این روش، زمان بین ایجاد یک طراحی مفهومی از محصول و شروع به کار خط تولید آن به طور چشمگیری کاهش یافت. دلیل اصلی این موضوع در وهله اول، بهبود طراحی نمونه‌های اولیه با استفاده از FEM بود. این روش سرعت آزمایش و توسعه محصول را افزایش داد. در مجموع، دقت بالا، طراحی پیشرفته، درک بهتر پارامترهای بحرانی طراحی، نمونه‌سازی مجازی، کاهش نیاز به ساخت نمونه‌های فیزیکی، چرخه‌های طراحی سریع‌تر و ارزان‌تر، بهبود بهره‌وری و بهبود درآمد را می‌توان به عنوان مزایای FEM برشمرد. علاوه بر این موارد، مزایای این روش باعث شده است تا FEA برای به کارگیری در مدل‌سازی‌های تصادفی به منظور حل عددی مدل‌های احتمالاتی نیز پیشنهاد شود

:Reference

https://blog.faradars.org/finite-element-method/

اشتراک‌ها:
دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *